MATH 320 NOTES 3

Diagonalization

Recall that if V' is finite dimensional and T : V' — V is a linear transfor-
mation, then the matrix representation of T', [T, for some basis a captures
all the properties of T'. For example, T is invertible iff [T, is invertible, and
SO on.

And when it comes to matrices, some of the nicest ones to deal with
are diagonal matrices — the ones whose nonzero entries appear only on the
diagonal.

This chapter is motivated by investigating when we can view a linear
transformation 7" as a diagonal matrix,

5.1 Eigenvalues and eigenvectors

Definition 1. Let V' be finite dimensional and T : V. — V be a linear
transformation. T is diagonalizable if there is a basis a for V', such that
[T]a is a diagonal matriz.

Similarly, a matriz A € My, «n(F) is diagonalizable if there is an invertible
matriz Q, such that QAQ™" is diagonal.

Note that any diagonal matrix is (trivially) diagonalizable, for example,
the zero matrix, I, al, for any scalar a.

Exercise: A matrix A is diagonalizable iff there is a basis «, such that
[L4]q is diagonal.

Suppose now that dim(V) =n and T : V — V is diagonalizable, i.e. for
some basis a = {v1,...,v,}, D := [T], is diagonal. Say,

A 0. 0
0 Xo... O
0 ...

Let’s look at the first column of D: it is [T'(v1)]a, so we must have that
T(v1) = Ajv1. Similarly, it must be that T'(v2) = Agvg, and so on. More
generally, for all i <n, T'(v;) = A\jv;. This motivates the next definition.

Definition 2. Let T : V — V be a linear transformation, V finite dimen-
sional. An eigenvector for T is a vector v # 0, such that for some scalar
A,
T(v) = lv.
Then we say that X is an eigenvalue.
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Similarly, if A € Myxn(F), an eigenvector for A isv € F", v # 0, such
that Av = \vfor some scalar A € F; such a \ is an eigenvalue for A.

Theorem 3. Let V' be finite dimensional and T : V — V be a linear trans-
formation. T is diagonalizable iff V' has a basis of eigenvectors for T'.

Proof. For one direction, suppose that 7' is diagonalizable. Let a = {v1, ..., v, }
be a basis for V, such that D = [T, is diagonal. But then by the above
analysis, for each i < n, T'(v;) = A\v;, where A\ = D;, the (i,7)-th entry of
D. So, each vector in « is an eigenvector.

For the other direction, suppose that o = {vy,...,v,} is a basis of eigen-
vectors for T. For each i < n, let A\; be a scalar such that T'(v;) = \;v;.
Then,

A 0.0
0 X... O
[T]a =
0 An
So, T is diagonalizable. O

Next we want to see how, given a linear transformation 7', we can find
eigenvalues and eigenvectors for T'. First, note the following lemma.

Lemma 4. \ is an eigenvalue for A € My, xy, iff det(A—M\I,) = 0. Also, ifv
is an eigenvector corresponding to the eigenvalue A, then v € ker(A — \I,,).

Proof. \ is an eigenvalue for A iff for some v # 0, Av = v iff Av— v =0
iff (A — M,,)v = 0 for some nonzero v iff (A — AI,,) is not one-to-one iff
(A — AI,) is not invertible iff det(A — AI,,) = 0.

For the second statement, suppose that v is an eigenvector with eigenvalue
A. Then Av = v, so (A — M,)v = Av— v =0,s0 v € ker(A—\,,). O

Definition 5. Let A € M, «,(F). The characteristic polynomial of A
18

Fa(t) = det(A — tI,).

What we have so far is that A is an eigenvalue of A iff A is a root of the
characteristic polynomial fa(t).

Next we want to generalize the above lemma and definition of the char-
acteristic polynomial to a linear transformation 7' : V. — V, V finite di-
mensional. To define the characteristic polynomial of T, we have to take a
matrix representation, with respect to some basis. So we should make sure
the choice of basis does not matter i.e. any basis will yield the same char-
acteristic polynomial. To do this we make use of the following fact about
similar matrices.

Lemma 6. Let A, B € M, x,(F) be similar matrices. Then they have the
same characteristic polynomial. I.e. det(A — tI,) = det(B — t1,).
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Proof. Let @ be an invertible matrix, such that A = Q' BQ. Then,
det(A — tI,) = det(Q ' BQ — tI,,) = det(Q (B — t1,)Q) =

det(Q 1) det(B — tI,,) det(Q) = det(Q Q) det(B — tI,,) = det(B — tI,).
O

Corollary 7. Let a, 8 be two bases for a finite dimensional V andT : V —
V' be a linear transformation. Then det([T]o — tl,) = det([T]s — t1n).

Proof. Since [T], and [T]g are similar matrices, the result follows by the
above lemma.

O

Definition 8. Let T : V. — V be a linear transformation, V finite dimen-
sional. The characteristic polynomial of T is

fT(t) = det([T]a - tIn)a

where o is any basis for V.

By the above lemma the characteristic polynomial of T" is well defined i.e.
it is independent of the choice of the basis a.

Theorem 9. Let T : 'V — V be a linear transformation, V finite dimen-
sional. Then,

(1) X is an eigenvalue iff A is a root of the characteristic polynomial fr
i.e. fr(A) =0;

(2) v is an eigenvector corresponding to X iff v # 0 and v € ker(T — \I).
Here I :' V. — V is the identity linear transformation I(x) = xz, and
M(z) = Az.

Proof. Let’s show the second item first: v is an eigenvector corresponding
to A iff v #£ 0 and T(v) = M iff v # 0 and (T — M)(v) = T(v) — v = 0 iff
v#0 and v € ker(T — \I).

For the first item, X is an eigenvalue iff there is v # 0 and T'(v) = \v iff
there is there is v # 0, v € ker(T — AI) iff ker(T — A1) # {0} iff ker([T]q —
M) # {0} for some basis a iff f(\) = det([T]q — M) = 0. O

Steps to find eigenvalues and eigenvectors of T*:

(1) Solve f(t) = 0, where f is the characteristic polynomial of 7. Say
the roots are {\q, ..., A}

(2) For each i < k, solve for v in T'(v) = A\jv. The (nonzero) solutions
are the eigenvectors corresponding to ;.

(3) Check if we have enough linearly independent eigenvectors to form
a basis for V. If yes, then T is diagonalizable.

Below we give some examples.

o OO

1 2
Example 1. Find the eigenvalues and eigenvectors of A= [0 1
10
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Compute the characteristic polynomial of A, fa(t) = det(A — tI3) =
1—-¢t 2 0
det{ 0 1-t 0 |=@0-t)1-t)(~t)=—t(t—1)?> =0. The solutions
1 0 -t
are Ay =0, Ay = 1.

U1
For A = 0, solving Av = A [ va | =0, we get
v3
e v + 2u9 =0,
® Uy = 07
e v =0.

So the solutions set is Span((0,0,1)). Then we have the eigenvector (0,0, 1)
(every other solution is a multiple of it).
vy
For Ay =1, solving Av =v,v= | vy |, we get
U3
o v + 2uy = vy,
® Uy = V2,
® VU1 = V3.
So the solutions set is Span((1,0,1)). Then we have the eigenvector (1,0, 1)
(every other solution is a multiple of it).
To sum up we have two eigenvalues: {0, 1} and corresponding eigenvec-
tors (0,0,1),(1,0,1). It follows that A is not diagonalizable because there
are only two linearly independent eigenvectors, so there is no basis of eigen-

vectors.
Example 2. Let 7 : R? — R3 be

T ({v1,v2,v3)) = (v1 + v3, —v2 + v3, 203)

Taking o = {e1, €2, e3} to be the standard basis, we get that

1 0 1
Tla=0 -1 1
0 0 2

The characteristic polynomial of T'is f(t) = det([T]o—tI3) =det | 0 —1—t¢

1I-t)(-1-t)2—-t) ==+ 1)(t—-1)(t—2).
The solutions are 1, —1, 2.

For A = 1, solve for T'(v) = v and get v1 +v3 = v1, —va+v3 = Vo, 203 = V3,
so v3 = 0 = vo. Eigenvector: (1,0,0).

For A = —1, solve for T'(v) = —v and get v + v3 = —v1, —v2 + v3 =
—vg,2v3 = —v3, so v3 = 0 = vy. Eigenvector: (0, 1,0).

For A = 2, solve for T'(v) = v and get v +v3 = 2v1, —vg +v3 = 209, 203 =
2v3, s0 v1 = v3,v3 = 3vg. Eigenvector: (3,1, 3).
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In this case we have a basis of eigenvectors: 8 = {(1,0,0), (0,1,0), (3,1,3)},
and so T is diagonalizable. In particular, we have that

1 0 0
T)z={0 -1 0
0 0 2

5.2 Diagonalizability In this next section, we analyze what type of
matrices/linear transformations are diagonalizable.

Theorem 10. LetT : V — V be a linear transformation. Suppose {1, ..., \i}
are distinct eigenvalues, with corresponding eigenvectors {vi,...,vp}. Then
{v1, ..., v} are linearly independent.

Proof. By induction on k. If k£ = 1, this is since eigenvectors are nonzero.
Suppose that k£ > 1, and {v1,...,vx_1} are linearly independent. Suppose
that ajvy + ... + agvg = 0. Since for each i, T'(v;) = A\;jv;, we have that

T(a1v1 + ... + agvg) = a1 \v1 + ... + ap\vg = 0.
The last equality is because T'(0) = 0. We also have that
Ap(a1v1 + ..o + agvg) = Agaivy + ... + Agagvg = 0.
By solving for agApvi in both equations, we get
A1V + oo F ARQE_1Vk—1 = AMA1V] + oo F A1 Op—1Vp—1-
It follows that,
(Ak = M)arvr + (A — A2)agvz + ... + (A — Ae—1)ag—1v5—1 = 0.

Since the eigenvalues are distinct, for all ¢ < k, (A — A;) # 0. Then by
the inductive hypothesis , that {vy,...,v5x—1} are linearly independent, we
get that for all ¢ < k, a; = 0. But then also a; = 0, since vy, # 0.

O

As an immediate corollary we have:

Corollary 11. LetT : V — V be a linear transformation, with dim(V') = n.
Suppose that T has n many distinct eigenvalues. Then there are n many
linearly independent eigenvectors and so T is diagonalizable.

What about the case when the number of eigenvalues is less than dim(V)?
As we have seen earlier in some of these cases, the matrix is diagonalizable,

1 20
such as the example above with A= [0 1 0
1 00

1
On the other hand, | 0
0

o NN O

0
0 | has two eigenvalues 1, 2 and it is diagonal.
2
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So next, we analyze, given an eigenvalue, how many linearly independent
eigenvectors correspond to it. Let A be an eigenvalue for T': V — V (or a
matrix A). Define

E):={v]|T(v) = \v}.
FE), is called the eigenspace corresponding to .

Lemma 12. FE) is a subspace.

Proof. Exercise. O

Now, note that the number of linearly independent eigenvectors for \ is
exactly dim(FE}y). So, in order of have enough eigenvectors for a basis for V,
we would need that for each eigenvalue A, dim(E)) matches the power with
which A\ appears as a root in the characteristic polynomial. That brings us
to the following definition.

Definition 13. A polynomial f(t) with coefficients in F splits over F if
we can factor f(t) = c(t — a1)(t — a2)...(t — a,), where ¢ and each a; € F.
Here that a;’s do not need to be distinct.

For example,

(x — 1)3 splits over Q (and so over R).
23 —x =z(x — 1)(x + 1) splits over Q.
22 + 1 does not split over R, but it does split over C.
2% — 2 does not split over Q, but it does split over R.

Definition 14. Let A be an eigenvalue for T : V — V (or a matriz A), with
a characteristic polynomial f(t).

(1) The algebraic multiplicity of \ is the largest power k, such that

F(t) = (t = Nfg(t).
(2) The geometric multiplicity of A is dim(E)).

Remark 15. The book uses the word “multiplicity” to denote “algebraic
multiplicity”.

Lemma 16. Let V,T be as above, and let A be an etgenvalue with algebraic
multiplicity a. Then 1 < dim(E)) < a. Le. the geometric multiplicity is no
more that the algebraic multiplicity.

Proof. Let {v;,...,v;} be a basis for F\. Extend it to a basis a for V', and
let A= [T],. Then

(M B
(5 e)
and so the characteristic polynomial is f(t) = (t—\)*g(t), which means that
k is no more than the algebraic multiplicity of A, [l

And now for the main theorem of the section:
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Theorem 17. Suppose that V is a finite dimensional vector space over F,
dim(V)=mn, and T : V. — V is linear. Then T is diagonalizable iff both of
the following hold:
(1) The characteristic polynomial f(t) splits over F.
(2) For every eigenvalue A\, the algebraic multiplicity of A\ equals the
geometric multiplicity of X (i.e. dim(E})).

Proof. First recall that the characteristic polynomial has degree n.
For the first direction, suppose that 7' is diagonalizable. Let a = {vy, ..., v}

be a basis of eigenvectors. Then D := [T, is diagonal, say
di1 0 0
0 dog ... 0
D= .
0 0 ... dun

Then f(t) = (t — dy1)(t — d22)...(t — dny), and so it splits.

Now let the eigenvalues for T' be {A1,...,\x}, & < n. Note that above,
each d;; is one of those eigenvalues. For each ¢ < k, let a; be the algebraic
multiplicity of A\; and let b; be its geometric multiplicity i.e. dim(E),) = b;.
Then f(t) = c(t — A\)™...(t — \g)%, and

bi+by+...+bp=n=a1 +as+ ... +ag.

And since each b; < a;, we have to have that a; = b;.

For the other direction, suppose that items (1) and (2) hold. Again,
let {A1,..., A} be the eigenvalues for T', with algebraic multiplicity a; and
geometric multiplicity b; for A;. Since the characteristic polynomial splits,
we must have that n = a; + a2 + ... + a. By item (2) for each i, a; = b;, so
b1+b2+...+bk:n.

For each i, let a; = {vj1, ..., vip, } be a basis for E),, and let a = U;a;. We
will show that « is a basis for V. Since |a| = by + b2 + ... + by = n, it is
enough to show that « is linearly independent.

So, suppose that

S0yl g >

For i <i <k, let x; = X1<j<p,aijvij. Then each x; € E),, and
r1+ .. +xp = 6
Claim 18. For alli <k, z; = 0.

Proof. Note that if z; # 0, then it is an eigenvector for the eigenvalue ;. So
if some of them are nonzero, we have a linear combination of eigenvectors
for distinct eigenvalues equal to 0. We already showed that is impossible.

O
Then for all i < k, x; = Xi<j<p,aijvij = 6, and since «; is linearly
independent, the coefficients must be zero i.e. a;1 = a;2 = ... = ap, = 0. So

for all 4, j, a;; = 0. This concludes the proof that « is linearly independent.
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Then « is a basis of eigenvectors, and so T is diagonalizable.



