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Diagonalization

Recall that if V is finite dimensional and T : V → V is a linear transfor-
mation, then the matrix representation of T , [T ]α for some basis α captures
all the properties of T . For example, T is invertible iff [T ]α is invertible, and
so on.

And when it comes to matrices, some of the nicest ones to deal with
are diagonal matrices – the ones whose nonzero entries appear only on the
diagonal.

This chapter is motivated by investigating when we can view a linear
transformation T as a diagonal matrix,

5.1 Eigenvalues and eigenvectors

Definition 1. Let V be finite dimensional and T : V → V be a linear
transformation. T is diagonalizable if there is a basis α for V , such that
[T ]α is a diagonal matrix.

Similarly, a matrix A ∈Mn×n(F ) is diagonalizable if there is an invertible
matrix Q, such that QAQ−1 is diagonal.

Note that any diagonal matrix is (trivially) diagonalizable, for example,
the zero matrix, In, aIn for any scalar a.

Exercise: A matrix A is diagonalizable iff there is a basis α, such that
[LA]α is diagonal.

Suppose now that dim(V ) = n and T : V → V is diagonalizable, i.e. for
some basis α = {v1, ..., vn}, D := [T ]α is diagonal. Say,

D :=


λ1 0... 0
0 λ2... 0
...
0 ... λn


Let’s look at the first column of D: it is [T (v1)]α, so we must have that

T (v1) = λ1v1. Similarly, it must be that T (v2) = λ2v2, and so on. More
generally, for all i ≤ n, T (vi) = λivi. This motivates the next definition.

Definition 2. Let T : V → V be a linear transformation, V finite dimen-
sional. An eigenvector for T is a vector v 6= ~0, such that for some scalar
λ,

T (v) = λv.

Then we say that λ is an eigenvalue.
1
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Similarly, if A ∈ Mn×n(F ), an eigenvector for A is v ∈ Fn, v 6= ~0, such
that Av = λvfor some scalar λ ∈ F ; such a λ is an eigenvalue for A.

Theorem 3. Let V be finite dimensional and T : V → V be a linear trans-
formation. T is diagonalizable iff V has a basis of eigenvectors for T .

Proof. For one direction, suppose that T is diagonalizable. Let α = {v1, ..., vn}
be a basis for V , such that D = [T ]α is diagonal. But then by the above
analysis, for each i ≤ n, T (vi) = λvi, where λ = Dii, the (i, i)-th entry of
D. So, each vector in α is an eigenvector.

For the other direction, suppose that α = {v1, ..., vn} is a basis of eigen-
vectors for T . For each i ≤ n, let λi be a scalar such that T (vi) = λivi.
Then,

[T ]α =


λ1 0... 0
0 λ2... 0
...
0 ... λn

 .

So, T is diagonalizable. �

Next we want to see how, given a linear transformation T , we can find
eigenvalues and eigenvectors for T . First, note the following lemma.

Lemma 4. λ is an eigenvalue for A ∈Mn×n iff det(A−λIn) = 0. Also, if v
is an eigenvector corresponding to the eigenvalue λ, then v ∈ ker(A− λIn).

Proof. λ is an eigenvalue for A iff for some v 6= ~0, Av = λv iff Av − λv = ~0
iff (A − λIn)v = ~0 for some nonzero v iff (A − λIn) is not one-to-one iff
(A− λIn) is not invertible iff det(A− λIn) = 0.

For the second statement, suppose that v is an eigenvector with eigenvalue
λ. Then Av = λv, so (A− λIn)v = Av − λv = ~0, so v ∈ ker(A− λIn). �

Definition 5. Let A ∈ Mn×n(F ). The characteristic polynomial of A
is

fA(t) = det(A− tIn).

What we have so far is that λ is an eigenvalue of A iff λ is a root of the
characteristic polynomial fA(t).

Next we want to generalize the above lemma and definition of the char-
acteristic polynomial to a linear transformation T : V → V , V finite di-
mensional. To define the characteristic polynomial of T , we have to take a
matrix representation, with respect to some basis. So we should make sure
the choice of basis does not matter i.e. any basis will yield the same char-
acteristic polynomial. To do this we make use of the following fact about
similar matrices.

Lemma 6. Let A,B ∈ Mn×n(F ) be similar matrices. Then they have the
same characteristic polynomial. I.e. det(A− tIn) = det(B − tIn).
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Proof. Let Q be an invertible matrix, such that A = Q−1BQ. Then,

det(A− tIn) = det(Q−1BQ− tIn) = det(Q−1(B − tIn)Q) =

det(Q−1) det(B − tIn) det(Q) = det(Q−1Q) det(B − tIn) = det(B − tIn).

�

Corollary 7. Let α, β be two bases for a finite dimensional V and T : V →
V be a linear transformation. Then det([T ]α − tIn) = det([T ]β − tIn).

Proof. Since [T ]α and [T ]β are similar matrices, the result follows by the
above lemma.

�

Definition 8. Let T : V → V be a linear transformation, V finite dimen-
sional. The characteristic polynomial of T is

fT (t) = det([T ]α − tIn),

where α is any basis for V .

By the above lemma the characteristic polynomial of T is well defined i.e.
it is independent of the choice of the basis α.

Theorem 9. Let T : V → V be a linear transformation, V finite dimen-
sional. Then,

(1) λ is an eigenvalue iff λ is a root of the characteristic polynomial fT
i.e. fT (λ) = 0;

(2) v is an eigenvector corresponding to λ iff v 6= ~0 and v ∈ ker(T −λI).
Here I : V → V is the identity linear transformation I(x) = x, and
λI(x) = λx.

Proof. Let’s show the second item first: v is an eigenvector corresponding
to λ iff v 6= ~0 and T (v) = λv iff v 6= ~0 and (T − λI)(v) = T (v)− λv = ~0 iff

v 6= ~0 and v ∈ ker(T − λI).

For the first item, λ is an eigenvalue iff there is v 6= ~0 and T (v) = λv iff

there is there is v 6= ~0, v ∈ ker(T − λI) iff ker(T − λI) 6= {~0} iff ker([T ]α −
λI) 6= {~0} for some basis α iff fT (λ) = det([T ]α − λI) = 0. �

Steps to find eigenvalues and eigenvectors of T :

(1) Solve f(t) = 0, where f is the characteristic polynomial of T . Say
the roots are {λ1, ..., λk}.

(2) For each i ≤ k, solve for v in T (v) = λiv. The (nonzero) solutions
are the eigenvectors corresponding to λi.

(3) Check if we have enough linearly independent eigenvectors to form
a basis for V . If yes, then T is diagonalizable.

Below we give some examples.

Example 1. Find the eigenvalues and eigenvectors of A =

1 2 0
0 1 0
1 0 0
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Compute the characteristic polynomial of A, fA(t) = det(A − tI3) =

det

1− t 2 0
0 1− t 0
1 0 −t

 = (1− t)(1− t)(−t) = −t(t−1)2 = 0. The solutions

are λ1 = 0, λ2 = 1.

For λ1 = 0, solving Av = A

v1v2
v3

 = ~0, we get

• v1 + 2v2 = 0,
• v2 = 0,
• v1 = 0.

So the solutions set is Span(〈0, 0, 1〉). Then we have the eigenvector 〈0, 0, 1〉
(every other solution is a multiple of it).

For λ2 = 1, solving Av = v, v =

v1v2
v3

, we get

• v1 + 2v2 = v1,
• v2 = v2,
• v1 = v3.

So the solutions set is Span(〈1, 0, 1〉). Then we have the eigenvector 〈1, 0, 1〉
(every other solution is a multiple of it).

To sum up we have two eigenvalues: {0, 1} and corresponding eigenvec-
tors 〈0, 0, 1〉, 〈1, 0, 1〉. It follows that A is not diagonalizable because there
are only two linearly independent eigenvectors, so there is no basis of eigen-
vectors.

Example 2. Let T : R3 → R3 be

T (〈v1, v2, v3〉) = 〈v1 + v3,−v2 + v3, 2v3〉

Taking α = {e1, e2, e3} to be the standard basis, we get that

[T ]α =

1 0 1
0 −1 1
0 0 2


The characteristic polynomial of T is f(t) = det([T ]α−tI3) = det

1− t 0 1
0 −1− t 1
0 0 2− t

 =

(1− t)(−1− t)(2− t) = −(t+ 1)(t− 1)(t− 2).
The solutions are 1,−1, 2.

For λ = 1, solve for T (v) = v and get v1+v3 = v1,−v2+v3 = v2, 2v3 = v3,
so v3 = 0 = v2. Eigenvector: 〈1, 0, 0〉.

For λ = −1, solve for T (v) = −v and get v1 + v3 = −v1,−v2 + v3 =
−v2, 2v3 = −v3, so v3 = 0 = v1. Eigenvector: 〈0, 1, 0〉.

For λ = 2, solve for T (v) = v and get v1 +v3 = 2v1,−v2 +v3 = 2v2, 2v3 =
2v3, so v1 = v3, v3 = 3v2. Eigenvector: 〈3, 1, 3〉.
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In this case we have a basis of eigenvectors: β = {〈1, 0, 0〉, 〈0, 1, 0〉, 〈3, 1, 3〉},
and so T is diagonalizable. In particular, we have that

[T ]β =

1 0 0
0 −1 0
0 0 2


5.2 Diagonalizability In this next section, we analyze what type of

matrices/linear transformations are diagonalizable.

Theorem 10. Let T : V → V be a linear transformation. Suppose {λ1, ..., λk}
are distinct eigenvalues, with corresponding eigenvectors {v1, ..., vk}. Then
{v1, ..., vk} are linearly independent.

Proof. By induction on k. If k = 1, this is since eigenvectors are nonzero.
Suppose that k > 1, and {v1, ..., vk−1} are linearly independent. Suppose

that a1v1 + ...+ akvk = ~0. Since for each i, T (vi) = λivi, we have that

T (a1v1 + ...+ akvk) = a1λ1v1 + ...+ akλkvk = ~0.

The last equality is because T (~0) = ~0. We also have that

λk(a1v1 + ...+ akvk) = λka1v1 + ...+ λkakvk = ~0.

By solving for akλkvk in both equations, we get

λka1v1 + ...+ λkak−1vk−1 = λ1a1v1 + ...+ λk−1ak−1vk−1.

It follows that,

(λk − λ1)a1v1 + (λk − λ2)a2v2 + ...+ (λk − λk−1)ak−1vk−1 = ~0.

Since the eigenvalues are distinct, for all i < k, (λk − λi) 6= 0. Then by
the inductive hypothesis , that {v1, ..., vk−1} are linearly independent, we

get that for all i < k, ai = 0. But then also ak = 0, since vk 6= ~0.
�

As an immediate corollary we have:

Corollary 11. Let T : V → V be a linear transformation, with dim(V ) = n.
Suppose that T has n many distinct eigenvalues. Then there are n many
linearly independent eigenvectors and so T is diagonalizable.

What about the case when the number of eigenvalues is less than dim(V )?
As we have seen earlier in some of these cases, the matrix is diagonalizable,

such as the example above with A =

1 2 0
0 1 0
1 0 0

.

On the other hand,

1 0 0
0 2 0
0 0 2

 has two eigenvalues 1, 2 and it is diagonal.
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So next, we analyze, given an eigenvalue, how many linearly independent
eigenvectors correspond to it. Let λ be an eigenvalue for T : V → V (or a
matrix A). Define

Eλ := {v | T (v) = λv}.
Eλ is called the eigenspace corresponding to λ.

Lemma 12. Eλ is a subspace.

Proof. Exercise. �

Now, note that the number of linearly independent eigenvectors for λ is
exactly dim(Eλ). So, in order of have enough eigenvectors for a basis for V ,
we would need that for each eigenvalue λ, dim(Eλ) matches the power with
which λ appears as a root in the characteristic polynomial. That brings us
to the following definition.

Definition 13. A polynomial f(t) with coefficients in F splits over F if
we can factor f(t) = c(t − a1)(t − a2)...(t − an), where c and each ai ∈ F .
Here that ai’s do not need to be distinct.

For example,

• (x− 1)3 splits over Q (and so over R).
• x3 − x = x(x− 1)(x+ 1) splits over Q.
• x2 + 1 does not split over R, but it does split over C.
• x2 − 2 does not split over Q, but it does split over R.

Definition 14. Let λ be an eigenvalue for T : V → V (or a matrix A), with
a characteristic polynomial f(t).

(1) The algebraic multiplicity of λ is the largest power k, such that
f(t) = (t− λ)kg(t).

(2) The geometric multiplicity of λ is dim(Eλ).

Remark 15. The book uses the word “multiplicity” to denote “algebraic
multiplicity”.

Lemma 16. Let V, T be as above, and let λ be an eigenvalue with algebraic
multiplicity a. Then 1 ≤ dim(Eλ) ≤ a. I.e. the geometric multiplicity is no
more that the algebraic multiplicity.

Proof. Let {vi, ..., vk} be a basis for Eλ. Extend it to a basis α for V , and
let A = [T ]α. Then

A =

(
λIk B
O C

)
,

and so the characteristic polynomial is f(t) = (t−λ)kg(t), which means that
k is no more than the algebraic multiplicity of λ, �

And now for the main theorem of the section:
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Theorem 17. Suppose that V is a finite dimensional vector space over F ,
dim(V ) = n, and T : V → V is linear. Then T is diagonalizable iff both of
the following hold:

(1) The characteristic polynomial f(t) splits over F .
(2) For every eigenvalue λ, the algebraic multiplicity of λ equals the

geometric multiplicity of λ (i.e. dim(Eλ)).

Proof. First recall that the characteristic polynomial has degree n.
For the first direction, suppose that T is diagonalizable. Let α = {v1, ..., vn}

be a basis of eigenvectors. Then D := [T ]α is diagonal, say

D =


d11 0 ... 0
0 d22 ... 0
...
0 0 ... dnn

 .

Then f(t) = (t− d11)(t− d22)...(t− dnn), and so it splits.
Now let the eigenvalues for T be {λ1, ..., λk}, k ≤ n. Note that above,

each dii is one of those eigenvalues. For each i ≤ k, let ai be the algebraic
multiplicity of λi and let bi be its geometric multiplicity i.e. dim(Eλi) = bi.
Then f(t) = c(t− λ1)a1 ...(t− λk)ak , and

b1 + b2 + ...+ bk = n = a1 + a2 + ...+ ak.

And since each bi ≤ ai, we have to have that ai = bi.
For the other direction, suppose that items (1) and (2) hold. Again,

let {λ1, ..., λk} be the eigenvalues for T , with algebraic multiplicity ai and
geometric multiplicity bi for λi. Since the characteristic polynomial splits,
we must have that n = a1 + a2 + ...+ ak. By item (2) for each i, ai = bi, so
b1 + b2 + ...+ bk = n.

For each i, let αi = {vi1, ..., vibi} be a basis for Eλi , and let α = ∪iαi. We
will show that α is a basis for V . Since |α| = b1 + b2 + ... + bk = n, it is
enough to show that α is linearly independent.

So, suppose that

Σi≤i≤k,1≤j≤biaijvij = ~0.

For i ≤ i ≤ k, let xi = Σ1≤j≤biaijvij . Then each xi ∈ Eλi , and

x1 + ..+ xk = ~0.

Claim 18. For all i ≤ k, xi = ~0.

Proof. Note that if xi 6= ~0, then it is an eigenvector for the eigenvalue λi. So
if some of them are nonzero, we have a linear combination of eigenvectors
for distinct eigenvalues equal to ~0. We already showed that is impossible.

�

Then for all i ≤ k, xi = Σ1≤j≤biaijvij = ~0, and since αi is linearly
independent, the coefficients must be zero i.e. ai1 = ai2 = ... = aibi = 0. So
for all i, j, aij = 0. This concludes the proof that α is linearly independent.
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Then α is a basis of eigenvectors, and so T is diagonalizable.
�


